Simulado

Simulado Gerado com Sucesso!
IBMEC
Matemática

A seguir, você encontra 10 questões aleatórias do meu banco de dados.

Para fazer outra seleção de problemas, basta dar um refresh no seu navegador.

Confira o seu desempenho no final.

>>Questão 1 — IBMEC

Na figura abaixo, a circunferência maior tem raio 4cm, há duas circunferências de raio 2cm, quatro circunferências de raio 1cm, quatro de raio 0,5cm, quatro de raio 0,25cm, e assim por diante. Considere que
• a é a área da região branca interior à circunferência de raio 4cm e exterior às circunferências de raio 2cm,
• b é a soma das áreas das demais regiões brancas, ou seja, interiores às circunferências de raio 2cm,
• c é a soma das áreas de todas as regiões pintadas de cinza.

Segue que
a) a < b < c.
b) b < a < c.
c) a = b = c.
d) a + b = c.
e) a + c = b.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 2 — IBMEC

Uma calculadora especial, criada por um engenheiro eletrônico, possui a tecla [RL] , que, quando acionada, calcula:

• a raiz quadrada do número que está no visor, caso esse número seja maior do que 1000;
• o logaritmo na base 10 do número que está no visor, caso esse número seja menor ou igual a 1000.

Uma pessoa digitou no visor dessa calculadora o número 10.000.000.000.000.000. Assim, o número de vezes consecutivas que a tecla [RL] deverá ser acionada até que apareça no visor um número negativo é igual a

a) 5.
b) 6.
c) 7.
d) 8.
e) 9.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 3 — IBMEC

A desigualdade triangular é um princípio da geometria que estabelece o seguinte:

“Qualquer lado de um triângulo é sempre menor do que a soma dos outros dois”.

Considere que A, B, C e D são vértices de um quadrilátero. Se AC é uma das diagonais desse quadrilátero, a única afirmação que não é necessariamente verdadeira é

a) AC < AB + BC.
b) AC < AD + DC.
c) AB < AC + BC.
d) DC < AC + DC.
e) DC < AB + BC.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 4 — IBMEC

A partir de duas sentenças p e q, pode-se construir uma nova sentença unindo-se as duas anteriores por meio
de um conectivo lógico. Na tabela abaixo, são descritos dois desses conectivos.

Conectivo
Sentença
Leitura
Significado

condicional
(→)

p → q
Se p, então q. A sentença p → q só é falsa se p for verdadeira e q for falsa.
(→) Nos demais casos, p → q é verdadeira

bicondicional
(↔)

p ↔ q
p se, e somente se, q. A sentença p ↔ q só é verdadeira quando p e q são ambas verdadeiras ou p e q são ambas falsas.
Nos demais casos, p ↔ q é falsa.

Considere as duas sentenças abaixo.

(1) Se o filme já começou, então o telefone está desligado.
(2) O telefone está desligado se, e somente se, o cidadão é educado.

Sabendo que a sentença (1) é falsa e a sentença (2) é verdadeira, é correto concluir que

a) o filme já começou, o telefone não está desligado e o cidadão é educado.
b) o filme já começou, o telefone está desligado e o cidadão é educado.
c) o filme já começou, o telefone não está desligado e o cidadão não é educado.
d) o filme não começou, o telefone está desligado e o cidadão é educado.
e) o filme não começou, o telefone não está desligado e o cidadão não é educado.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 5 — IBMEC

Considere que, nos seguintes enunciados, a palavra jovem sempre esteja relacionada à mesma pessoa.

(I) “Se, para ingressar no curso de Administração que pretendia, um jovem concorreu com 749 vestibulandos para 50 vagas, então para ingressar no programa de trainee da empresa que ele quer, agora que está se formando, ele está concorrendo com 14999 candidatos para apenas 30 vagas.”

(II) “A relação candidato/vaga no vestibular do curso de Administração que o jovem pretendia foi igual a 15.”

(III) “A relação candidato/vaga no processo de trainee que o jovem quer é igual a 500.”

Sabe-se que, para que um condicional do tipo “se A então B” seja falso, é necessário e suficiente que A seja uma sentença verdadeira e que B seja uma sentença falsa. Com isso, para concluir que o condicional apresentado no quadro (I) é falso,

a) é necessário saber que a informação do quadro (II) é verdadeira e a informação do quadro (III) é falsa.
b) é suficiente saber que a informação do quadro (II) é verdadeira e a informação do quadro (III) é falsa.
c) é necessário saber que a informação do quadro (II) é falsa e a informação do quadro (III) é verdadeira.
d) é suficiente saber que a informação do quadro (II) é falsa e a informação do quadro (III) é verdadeira.
e) é necessário obter mais informações além da veracidade ou da falsidade das informações dos quadros (II) e (III).

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 6 — IBMEC

Se a>1, então a equação

ax + ax2 – a = 0

tem

a) nenhuma solução, independente do valor de a.
b) nenhuma ou apenas uma solução, dependendo do valor de a.
c) nenhuma, apenas uma ou apenas duas soluções, dependendo do valor de a.
d) apenas uma solução, independente do valor de a.
e) apenas duas soluções, independente do valor de a.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 7 — IBMEC

Num tribunal foram interrogados dois envolvidos em um crime, Fulam e Rotiele. Um deles sempre diz a verdade e o outro sempre mente. Do depoimento de Fulam foi extraída a frase

"Se Rotiele confiou em mim, então este júri também confia."

E do depoimento de Rotiele foi extraída a frase

"É impossível que Fulam somente cuide do dinheiro de todas as pessoas que não cuidam do próprio dinheiro."

Dessa forma, a afirmação verdadeira entre as alternativas abaixo é

a) "O júri não confia em Fulam."
b) "Fulam é o que diz a verdade."
c) "Rotiele não confiou em Fulam."
d) "Se Rotiele está no júri, então ainda confia em Fulam."
e) "O trecho acima citado do depoimento de Rotiele também poderia ter aparecido no depoimento de Fulam."

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 8 — IBMEC

Um dos mais famosos problemas da história da matemática, o “último teorema de Fermat” foi resolvido em 1995 pelo inglês Andrew Wiles. Demonstrar esse teorema representou um grande desafio aos mais brilhantes matemáticos por mais de 350 anos, apesar de seu enunciado ser relativamente simples, como mostrado a seguir:

Se n é um número natural maior do que 2, então a equação

xn = yn + zn

não apresenta soluções em que x, y e z sejam simultaneamente números inteiros positivos.

Já para n = 2, a equação xn = yn + zn admite soluções nas condições do teorema, enunciadas acima. Uma dessas
soluções é dada por

a) x = 1, y = 1 e z = 0.
b) x = 1, y = 0,6 e z = 0,8.
c) x = 13, y = 12 e z = 5.
d) x = , y = 1 e z = 2.
e) x = 3, y = 4 e z = 5.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 9 — IBMEC

Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar 10 caixas de 1kg do sabão Limpinho, mas não pode comprar as mesmas 10 caixas de 1kg do sabão Cheiroso. Seja M o maior número de caixas de 1kg do sabão Cheiroso que dona Nina pode comprar com a quantia que tem em sua carteira. Nessas condições, M vale, no mínimo,

a) 9.
c) 7.
b) 8.
d) 6.
e) 5.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


>>Questão 10 — IBMEC

Todos os candidatos inscritos num vestibular escolheram na ficha de inscrição que preencheram uma única entre as três seguintes situações prévias (em relação ao ano anterior): freqüentou um cursinho, acabou de sair do ensino médio ou estudou sozinho. Por um erro no processamento dos dados, foi gerado um relatório sobre essas respostas apenas com as seguintes informações:

• 800 não fizeram cursinho,
• 1200 não acabaram de sair do ensino médio,
• 1500 não ficaram estudando sozinhos durante o último ano.

Com isso, conclui-se que o número total de inscritos foi igual a

a) 1250.
b) 1750.
c) 2500.
d) 3500.
e) 4750.

A B C D E
Saiba mais sobre esta questaoImprima esta questao Dicionário


(desabilite o bloqueador de pop-up)

Obs. Você pode, após ver o seu boletim, refazer estas mesmas questões (não dê refresh no navegador para mantê-las!).

Gerador de Simulados

Gere o seu simulado personalizado

Matéria

Questões

Instituição

Simulados VIP







Gerador Antigo

Gere o seu simulado personalizado (todas as questões na mesma tela)

Matéria

Instituição

Questões



Gerador de Provas

Sobre o conteúdo das questões:

Matemática


Sobre o conteúdo das questões:

Matemática


Professor Cardy
Simulado Enem 2014

Simulado ENEM 2014

Teste seus conhecimentos com questões do ENEM

Aprenda mais sobre isso! »

Simulado FUVEST

Simulado FUVEST 2014

Teste seus conhecimentos com questões da FUVEST

Aprenda mais sobre isso! »

Simulado Pesadelo

Simulado Pesadelo

Teste seus conhecimentos com questões mais difíceis do site

Aprenda mais sobre isso! »

Simulado Raciocínio Lógico

Simulado Raciocínio Lógico

Teste seus conhecimentos com questões de Raciocínio Lógico

Aprenda mais sobre isso! »

Calculadora de Porcentagem

Calculadora de Porcentagem

Utilize o aplicativo para aprender porcentagem

Aprenda mais sobre isso! »

Calculadora de Imposto de Renda

Calculadora de Imposto de Renda

Retido na Fonte mensal

Aprenda mais sobre isso! »

Gerador de Provas

Desafios de Lógica

Desafios de Raciocínio Lógico

Aprenda mais sobre isso! »

Gerador de Listas de Exercícios

Gerador de Listas de Exercícios

De todas as disciplinas do Ensino Médio

Aprenda mais sobre isso! »




 

ProfCardy.Com

2001 — 2014

14 anos on line!
GRATUITAMENTE, com acesso TOTAL e completamente liberado!